N-Doped Graphene with Low Intrinsic Defect Densities via a Solid Source Doping Technique

نویسندگان

  • Bo Liu
  • Chia-Ming Yang
  • Zhiwei Liu
  • Chao-Sung Lai
چکیده

N-doped graphene with low intrinsic defect densities was obtained by combining a solid source doping technique and chemical vapor deposition (CVD). The solid source for N-doping was embedded into the copper substrate by NH₃ plasma immersion. During the treatment, NH₃ plasma radicals not only flattened the Cu substrate such that the root-mean-square roughness value gradually decreased from 51.9 nm to 15.5 nm but also enhanced the nitrogen content in the Cu substrate. The smooth surface of copper enables good control of graphene growth and the decoupling of height fluctuations and ripple effects, which compensate for the Coulomb scattering by nitrogen incorporation. On the other hand, the nitrogen atoms on the pre-treated Cu surface enable nitrogen incorporation with low defect densities, causing less damage to the graphene structure during the process. Most incorporated nitrogen atoms are found in the pyrrolic configuration, with the nitrogen fraction ranging from 1.64% to 3.05%, while the samples exhibit low defect densities, as revealed by Raman spectroscopy. In the top-gated graphene transistor measurement, N-doped graphene exhibits n-type behavior, and the obtained carrier mobilities are greater than 1100 cm²·V-1·s-1. In this study, an efficient and minimally damaging n-doping approach was proposed for graphene nanoelectronic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

Controllable N-doping of graphene.

Opening and tuning an energy gap in graphene are central to many electronic applications of graphene. Here we report N-doped graphene obtained by NH3 annealing after N(+)-ion irradiation of graphene samples. First, the evolution of the graphene microstructure was investigated following N(+)-ion irradiation at different fluences using Raman spectroscopy, showing that defects were introduced in p...

متن کامل

A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor

Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...

متن کامل

Laser-induced solid-phase doped graphene.

There have been numerous efforts to improve the performance of graphene-based electronic devices by chemical doping. Most studies have focused on gas-phase doping with chemical vapor deposition. However, that requires a complicated transfer process that causes undesired doping and defects by residual polymers. Here, we report a solid-phase synthesis of doped graphene by means of silicon carbide...

متن کامل

Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10(12) e/cm(2) or below. Furthermore, chemical doping is susce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017